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The strong coupling constant αs, at some conventionally chosen

scale, is one of the fundamental parameters within Standard

Model. Precise values for αs are important for high-precision

tests of the Standard Model.

One of the most precise determinations of αs (at the low energy

scale of the τ lepton mass mτ = 1.777GeV ) comes from hadronic

tau decay: See Seminal work:

Braaten, E., Narison, S., and Pich, A. Nucl. Phys.(1992)

The inclusive semi-hadronic decay rate

Rτ = Γ(τ− → hadrons ντ(γ))/Γ(τ− → e−ν̄eντ(γ))) (1)

is very sensitive to the precise value of αs.



An independent highest-precision determination of the coupling

at low energies comes from a lattice perturbation theory analysis

of UV-sensitive lattice observables. These two highest-precision

determinations extrapolated to the Z mass yield

αs(M
2
z ) = 0.1212± 0.0011 (τ decayM.Davier et al.) (2)

αs(M
2
z ) = 0.1170± 0.0012 (latticeQ.Masson etal.). (3)

Note that the agreement between these two results, with the er-

rors quoted, is not good. They differ from each other by about

2.6 standard deviations. Furthermore, the lattice determination

is closer to αs(M2
z ) values obtained from high energy experi-

ments. Thus, the reliability of the estimates from the τ-lepton

data has been called in question.



Theoretical problems

● The notion of quark-hadron duality and its possible violation:
PT does not work locally in Minkowski space even at large ener-
gies because of non-perturbative color confinement effects. For-
tunately, owing the idea of quark-hadron duality

C. Poggio H. Quinn and S. Weinberg 1976

one may apply the quark-gluon perturbation theory (PT), but
only for inclusive quantities like decay rates.

● The basic principle is analyticity from which one derives the
finite energy sum rules relating the decay rate with the integral
of current-current correlation function.

Π
V/A
µν,ij(p) = (pµpν − gµν)Π

V/A,(1)(p) + pµpνΠ
V/A,(0)(p) (4)



Π
V/A
µν,ij(p) = ı

∫
eıp.x < ΩT{JV/Aµ,ij (x)J

V/A
ν,ij (0)+}Ω > (5)

JVµ,ij(x) = ψ̄j(x)γµψi(x) and JAµ,ij(x) = ψ̄j(x)γµγ5ψi(x) with i, j =

u, d, s The last quantity is calculated in PT.

The hadronic spectral functions

v1(s)/a1(s) = 2πImΠ(1)
ud,v/A

(s)

The decay rate

Rτ = 12π
∫ m2

τ

0

d s

m2
τ

(
1−

s

m2
τ

)2 [
(1 + 2

s

m2
τ
)(v1(s) + a1(s))/2π+ a0(s)/2π

]
(6)

Since

Π(J)(s) = |Vud|2[Π
(V,J)
ud (s)+Π(A,J)

ud (s)]+|Vus|2[Π(V,J)
us (s)+Π(A,J)

us (s)]



with Vij being the elements of the Cabibbo-Kobayashi-Maskawa

quark mixing matrix elements,

Rτ = Rτ,V +Rτ,A +Rτ,s

It is convenient to rewrite the decay rate in terms of physical

quantity, the Adler function

D(1+0)(s) = −s
d

d s
Π(1+0)(s) (7)

Main theoretical tool to calculate the correlator in QCD is the

renormalization group improved PT supplemented with the Wil-

son operator product expansion (OPE).

■ The renormalization group (RG) invariance cannot be used

unambiguously in the time-like region.



●The RG improvement and the analytical continuation proce-
dures in finite order perturbation theory do not commute. For
this reason there are two approaches to improve the perturba-
tive expansions with the help of the RG, namely fixed-order and
contour improved perturbation theory the FOPT and CIPT re-
spectively. Within FOPT extracted numerical values of αs have
been always lower.

● The RG improved approximations to the current-current corre-
lation functions parameterized in terms of the running coupling
do not obey correct analytical properties of the corresponding
exact quantities. The analytical properties are violated due to
the non-physical Landau singularities of the perturbative running
coupling that appear at small space-like momenta. This destroy
dispersion relation for the correlator which is crucial in the anal-
ysis.



Supposedly, these singularities may deteriorate the extracted val-

ues of αs within CIPT and FOPT .

● Dispersive Approaches (DA) are free from this obstacle. Within

DA the Landau singularities are systematically removed from the

observables order by order in PT.

Analytic Perturbation Theory a simple and effective dispersive

technique (APT)

D. Shirkov, I. Solovtsov, (1998,2000,2006)

I. Solovtsov, O. Solovtsova, K. Milton (1999)

The τ lepton decay rate has been analyzed within (APT)



Milton, K.A., Solovtsov, I.L., Solovtsova, O.P., Yasnov, V.I.

(2000)

However, APT predict , from the non-strange τ lepton decay

data, too large value for the strong coupling constant, αs(m2
τ ) =

0.403± 0.015 which can not be accepted.

● The QCD perturbation theory supplemented with the OPE fail

to describe the detailed infrared behavior of the Adler function

associated with the τ decay rate. This shortcoming remains in

APT too.

●In this paper we suggest a more sophisticated dispersive ap-

proach to the τ decay which is based on the approximation to



the Adler function with correct IR and UV properties. Part of

the results are published in

Magradze, Few-Body Syst. (2010) 48, 143-169

Our starting point is the semi-empirical representation for the

vector spectral function

v“semi−emp.”
1 (s) = θ(sp − s)vexp.1 (s) + θ(s− sp)v

pQCD
1 (s), (8)

where sp is the onset of perturbative continuum, an infrared

boundary in Minkowski region above which we trust pQCD.

0 < sp < m2
τ



vexp.1 (s) is measured with high precision by ALEPH and OPAL

collaborations in the range 0 <
√
s < mτ = 1.777GeV .

Schael, S. et al.: [ALEPH Collaboration]. Phys. Rept. 421,

191 (2005)

vpQCD
1 (s) is the perturbation theory approximation to the spec-

tral function, in what follows we show that

vpQCD
1 (s) = vAPT

1 (s)

Previously analogical representation used by

Bertlmann, R.A., Launer, G. and deRafael,

Peris, S., Perrottet, M., de Rafael, E. (1998).



In this formulation one does not rely on the procedure of the

analytical continuation of the truncated OPE to Minkowski re-

gion, a source of the possible DVs. We assume that, the non-

perturbative description is essential only in the low energy region

0 < s < sp. But, in this region we will use the measured on the

experiment spectral function.

Our aim is to utilize the total information encoded in formula

(8). We will use it to extract the value of αs from the τ data.

The Adler function, the object determined in the space-like re-

gion ( q2 = −Q2 and Q2 > 0 for space-like momenta)

D(Q2) = Q2
∫ ∞
0

2v1(s)ds

(s+Q2)2
, (9)



The “semi-experimental” Adler function is obtained by inserting

ansatz (8) into integral (9)

D“semi−exp.”(Q
2) = Dexp.(Q

2, sp) +DpQCD(Q2, sp), (10)

where the experimental and perturbation theory components of

the total “semi-experimental” Adler function are defined as

Dexp.(Q
2, sp) = Q2

∫ sp
0

2vexp.1 (s)d s

(s+Q2)2
, (11)

DpQCD(Q2, sp) = Q2
∫ ∞
sp

2vpQCD
1 (s)d s

(s+Q2)2
(12)

Note that the “semi-experimental” Adler function is not wholly

experimental quantity, since it depends also on the theoretical

component DpQCD(Q2, sp).



Theoretical Framework

The main quantity of interest for following analysis is the Adler
function associated with the vector current two-point correla-
tor. The perturbative expansion of this function in the limit of
vanishing quark masses reads

DPT (Q
2) =

∞∑
n=0

ans (µ
2)

n+1∑
k=1

kcn,kL
k−1 where L ≡ ln

Q2

µ2
, (13)

as(µ2) = αs(µ2)
π with αs(µ2) being the strong coupling constant

renormalized at the scale µ. Using RI the expansion (13) may be
reexpressed as an asymptotic expansion in powers of the running
coupling αs(Q2)

DRGI(Q
2) =

∞∑
k=0

dk

(
αs(Q2)

π

)k
, (14)



where dn = cn,1 and the subscript “RGI” refers to the renor-

malization group improved perturbation theory. The first two

coefficients in series (14) are universal d0 = d1 = 1. In the MS

scheme for nf = 3 quark flavours the known coefficients take

values

d2 ' 1.6398, d3 ' 6.3710 d4 ' 49.0757.

the last coefficient d4 in the case of massless quarks has been

calculated recently by using powerful computational techniques:

Baikov, P.A., Chetyrkin, K.G., Kühn, J.H.:(2008)

The exact Adler function D(z) (z = Q2 = −q2) is known to

be analytic except the cut running along the negative real axis.



This fact enables us to calculate the hadronic non-strange vector

spectral function from the Adler function via the contour integral

v1(s) =
1

4πı

∮ −s+ıε

−s−ıε

D(z)

z
d z, (15)

where the path of integration, connecting the points −s∓ ıε on

the complex z-plane, avoids the cut running along the real neg-

ative axis. We shall assume, without loss of generality, that the

approximation (14) to the Adler function has only one unphysical

singularity located on the positive real axis. This is the case, for

example, if we use the exact (explicitly solved) two-loop order

running coupling in MS like renormalization schemes

B. Magradze “QUARKS-98” (1998)

Gardi, E., Grunberg, G., Karliner, M.:(1998)J. High Energy Phys.



07, 007 (1998)

The explicit expression for the MS scheme running coupling at

the two-loop order reads

a
(2)
s (Q2) = −

β0
β1

1

1 +W−1(ζ)
: ζ = −

1

eb1

(
Q2

Λ2

)−1/b1
, (16)

where β0 and β1 are the first two β-function coefficients

β0 =
1

4

(
11−

2

3
nf

)
, β1 =

1

16

(
102−

38

3
nf

)
,

b1 = β1/β
2
0, Λ ≡ ΛMS and W−1 denotes the branch of the Lam-

bert W function. On the other hand, a running coupling at

higher orders may be expanded in powers of the exact (explicitly

solved) two-loop order coupling



Kourashev, D.S., Magradze, B.A.: Theor. Math. Phys. 135,
531 (2003)

α
(k−loops)
s (Q2) =

∞∑
n=1

C(k)n α
(two−loops)n
s (Q2)|exact, (17)

where the numerical coefficients C(k)n are determined in terms of
the β-function coefficients (see Appendix A). It has been shown
in

Magradze, B.A.: Few-Body Systems 40,71-99 (2006)

that this series has a sufficiently large radius of convergence in
the space of the coupling constants, and its partial sums provide



very accurate approximations to the exact k-th order (k > 2)

coupling in the complex Q2 plane. The Adler function evalu-

ated with this approximation to the coupling has an unphysical

singularity located on the positive Q2-axis. The corresponding

cut runs along the finite interval of the positive Q2-axis. Never-

theless, formula (15) is still valid provided that the integration

contour avoids both the physical and unphysical cuts.

Let us separate out the parton level term from the perturbation

theory approximation to the Adler function

DRGI(Q
2) = 1 + dRGI(Q

2) : dRGI(Q
2) =

∞∑
k=1

dka
k
s(Q

2), (18)

where as(Q2) = αs(Q2)/π. As it was discussed above, the func-

tion dRGI(Q
2) is analytic except the cuts running along the real



Q2-axis. The physical cut runs along the real negative interval
−∞ < Q2 < 0, and the unphysical cut runs along the positive
interval 0 < Q2 < sL, where the point Q2 = Q2

L ≡ sL > 0 cor-
responds to the “Landau singularity”. We may then write a
Cauchy relation

dRGI(Q
2) =

1

2πı

∮
Γ

dRGI(w)

w −Q2
dw (19)

where the integral is taken round the closed contour Γ drawn in
Fig.1. We easily derive a violated dispersion relation (DR) for the
function dRGI(Q

2), using the asymptotic condition dRGI(z) → 0
as |z| → ∞,

dRGI(Q
2) = dAPT(Q2) + dL(Q2) (20)

where the function dAPT(Q2) satisfies the normal DR

dAPT(Q2) =
1

π

∫ ∞
0

ρeff(σ)

σ+Q2
d σ, (21)



with the effective spectral density

ρeff(σ) = Im{dRGI(−σ − ı0)}. (22)

It is to be noted here that the function

DAPT(Q2) = 1 + dAPT(Q2) (23)

is the analytic image of the perturbative Adler function deter-

mined in the sense of the Analytic Perturbation Theory (APT)

approach of Shirkov and Solovtsov. The second term in (20),

which violates the DR, corresponds to the contribution to the

integral (19) coming from the “Landau branch cut”. It is repre-

sented by the contour integral

dL(Q2) = −
1

2πı

∮
C+
L

dRGI(ζ)

ζ −Q2
d ζ, (24)



taken round the circle {ζ : ζ = sL + sL exp (ıφ),−π < φ ≤ π} in

the positive (anti-clockwise) direction. sL corresponds to the

Landau singularity.

The perturbation theory approximation to the hadronic spectral

function is calculated by inserting the series (18) into the in-

version formula (15). An important point is that the “Landau

part” dL(Q2) does not contribute into the spectral function, pro-

vided that s > 0. Thus one finds the expression for the hadronic

spectral function in terms of the effective spectral density

vpQCD
1 (s) ≡ vAPT

1 (s) =
1

2
(1 + r(s)), (25)

where

r(s) =
1

π

∫ ∞
s

ρeff(σ)

σ
dσ. (26)



With the help of formula (25), we express the “perturbative

component” of the total “experimental” Adler function in terms

of the effective spectral density

DpQCD(Q2, sp) =
∫ ∞
sp

K(Q2, s)(1 + r(s))d s (27)

where we have introduced the notation K(Q2, s) = Q2/(s+Q2)2.

Integrating (27) by parts we obtain a more convenient represen-

tation

DpQCD(Q2, sp) =
Q2

sp +Q2
(1+r(sp))−

Q2

π

∫ ∞
sp

ρeff(σ)

σ(σ+Q2)
d σ. (28)



● The power suppressed part of the total “semi-experimental”

Adler function is determined as

Dpow.sup.(Q
2, sp) = D“semi−exp.′′(Q

2)−DRGI(Q
2). (29)

Combining formulas (10), (20), we rewrite formula (29) in the

form

Dpow.sup.(Q2, sp) = Dexp.(Q2, sp) +DpQCD(Q2, sp)−DRGI(Q
2)

=
∫ sp
0 K(Q2, s)2vexp.1 (s)d s− dL(Q2)−

∫ sp
0 K(Q2, s)2vAPT

1 (s)d s.
(30)

From definitions (24) and (27), we obtain the asymptotic for-

mulas

K(Q2, s) ≈ Q−2 +O(sQ−4), dL(Q2) ≈ cLΛ2Q−2 +O(Λ4Q−4)

(31)

as Q2 → ∞ where Λ ≡ ΛMS, the conventional MS-scheme QCD

parameter. Since the parameter sL is proportional to Λ2 the



coefficient cL is a positive number independent of Λ

cL = Λ−2 1

2πı

∮
C+

L

dRGI(ζ)d ζ =
1

2π

sL
Λ2

∫ π
−π

dRGI(sL+ sLe
ıφ)d φ (32)

Using formulas (30) and (31), we write asymptotic expansion for

Dpow.sup.(Q2, sp). It follows from the OPE that the leading term

proportional to Q−2 in the asymptotic expansion vanishes if the

quarks are massless. This leads to the equation

cLΛ2 + sp(1 + r(sp)) +
1

π

∫ sp
0

ρeff(σ)d σ =
∫ sp
0

2vexp.1 (s)d s. (33)

To calculate coefficient cL numerically we use formula (32) and

exact (numeric) four-loop running coupling The values of cL
obtained in the MS scheme are listed in Table 1. In the calcula-

tions we have used the approximations to the Adler function of



increasing order. For the unknown O(α5
s) correction to the Adler

function, we use the geometric estimate d5 = d4(d4/d3) = 378.

The QCD correction to the Adler function

LO NLO N2LO N3LO N4LO

cL 0.301262 0.453421 0.555401 0.651373 0.721687

Tab. 1

It follows from the semi-empirical representation (8) for the spec-
tral function that one may calculate in perturbation theory the
decay rate of the τ lepton into hadrons of invariant mass larger
than

√
sp

Rpert.
τ,V |s>sp = 6|Vud|2SEW

∫ m2
τ

sp
wτ(s)v

APT
1 (s)d s, (34)



where

wτ(s) =
1

m2
τ

(
1−

s

m2
τ

)2(
1 + 2

s

m2
τ

)
,

Vud and SEW denote the flavor mixing matrix element and an

electro-weak correction term respectively. The condition Rpert.
τ,V |s>sp =

Rexp.
τ,V |s>sp leads to the equation

∫ m2
τ

sp
wτ(s)v

APT
1 (s)d s =

∫ m2
τ

sp
wτ(s)v

exp.
1 (s)d s. (35)

Using relation (25), we express the left hand side of (35) in terms

of the effective spectral density. By integrating by parts, after



some algebra, we obtain∫ m2
τ

sp
wτ(s)v

APT
1 (s)d s =

1

4

(
1−

sp

m2
τ

)3(
1 +

sp

m2
τ

)
(1 + r(sp))

−
1

4π

∫ m2
τ

sp

ρeff(s)

s

(
1−

s

m2
τ

)3(
1 +

s

m2
τ

)
d s.

(36)

Numerical Results for the Parameters

To extract the parameters sp and Λ from the data we have to
solve the system of equations

Φ1(sp,Λ
2) =

∫ sp
0

vexp.1 (s)d s, (37)

Φ2(sp,Λ
2) =

∫ m2
τ

sp
wτ(s)v

exp.
1 (s)d s, (38)



where

Φ1(sp,Λ
2) =

sp

2
(1 + r(sp)) +

1

2π

∫ sp
0

ρeff(σ)d σ+
cL
2

Λ2, (39)

Φ2(sp,Λ
2) = (1− s̄p)

3(1 + s̄p)
(1 + r(sp))

4

−
1

4π

∫ m2
τ

sp

ρeff(s)

s
(1− s̄)3(1 + s̄)d s,

(40)

with s̄p = sp/m2
τ and s̄ = s/m2

τ . The right hand sides of Eqs. (37)-

(38) are determined in terms of the empirical function vexp.1 (s).

We reconstruct the experimental vector spectral function from

the ALEPH 2005 spectral data for the vector invariant mass

squared distribution which is publicly available. To interpolate

the spectral function between the measured (at discrete points)

values, we use cubic splines.



We solve the system of equations (37)-(38) numerically using

various approximations to the Adler function.

We also determine the experimental uncertainties on the param-

eters coming from the uncertainties of the vector invariant mass

squared distribution. The correlations between the errors of the

distribution are properly taken into account using covariance ma-

trixes.

Let us test convergence of the numerical results in perturbation

theory. We use consecutive approximations to the Adler function

from LO to N4LO. For the unknown O(α5
s) correction, we use

the geometric estimate d5 = d4(d4/d3) = 378±378. The results

for the extracted values of the parameters are presented in Table



Observable Approximation to the Adler function

LO NLO N2LO N3LO N4LO

sp GeV2 1.7069 1.7098 1.7087 1.7069 1.7053
Λ GeV 0.4864 0.3778 0.3483 0.3316 0.3225
αs(m2

τ ) 0.4010 0.3373 0.3214 0.3126 0.3078

Tab. 3

Formally, we may write a series for the numerical value of the

coupling constant as follows

αs(m
2
τ )|N4LO = αs(m

2
τ )|LO +

4∑
k=1

∆k,

where ∆k = αs(m2
τ )|NkLO − αs(m2

τ )|Nk−1LO. Using the numbers

listed in Table 3 (we use abbreviation CI+ for the modified CIPT

accepted in this paper) we obtain the series

αs(m
2
τ )|CI+

N4LO = 0.4010−0.0638−0.0159−0.0088−0.0047. (41)



The changes of the leading term induced by the consecutive
corrections in the series are found to be: 15.9%, 4.0%, 2.2%
and 1.2%. Using the standard CIPT to analyze the same ALEPH
data we obtain (we use for PT correction to the τ decay rate the
value δ

(0)
exp. = 0.2091± 0.0065exp. extracted from ALEPH data)

αs(m
2
τ )|CIPT

N4LO = 0.485− 0.095− 0.023− 0.013− 0.007. (42)

We see that within CIPT the corrections provide slightly larger
changes of the leading term: 19.6%, 4.7%, 2.7% and 1.4%.
One finds that ∆k(CIPT)/∆k(CI+) ≈ 1.5 for k = 1−4 . So that
the new series converges more rapidly than the series standard
one.

The above series is used to find the so called indicative estimate
of the theoretical uncertainty: it is determined as a half of the
last retained term in the series



Körner, J.G., Krajewski, F., Pivovarov, A.A.: (2003)

The error defined in this way is heuristic and indicative. From
the series (41), we obtain the estimates within CI+

αs(m
2
τ )|NLO = 0.3373± 0.0160exp. ± 0.0319th

αs(m
2
τ )|N2LO = 0.3214± 0.0158exp. ± 0.0079th

αs(m
2
τ )|N3LO = 0.3126± 0.0145exp. ± 0.0044th

αs(m
2
τ )|N4LO = 0.3078± 0.0138exp. ± 0.0024th, (43)

here we have also included the experimental errors. Analogically,
from the CIPT series (42), one obtains

αs(m
2
τ )|NLO = 0.3904± 0.0109exp. ± 0.0475th

αs(m
2
τ )|N2LO = 0.3669± 0.0093exp. ± 0.0118th

αs(m
2
τ )|N3LO = 0.3537± 0.0084exp. ± 0.0066th

αs(m
2
τ )|N4LO = 0.3470± 0.0081exp. ± 0.0034th, (44)



The N4LO estimates in (43) and (44) correspond to the central

value d5 = 378. The additional theoretical error in the coupling

constant induced from the uncertainty in the fifth order unknown

coefficient (d5 = 378 ± 378) takes the values 0.0045 (≈ 1.5%)

and 0.0065 (≈ 1.9%) in the new and standard extraction proce-

dures respectively. We see that the indicative estimates of the

theoretical error within the new procedure are smaller than in

standard one. In contrast to this, the experimental errors on the

values of αs within the new procedure increases by the factor

of 1.76. It is remarkable that a more reliable estimate of the

theoretical error presented in the literature for the case CIPT is

close to the N3LO and N4LO values of the indicative error given

in formula (44).

Similarly, determining the indicative theoretical errors on the pa-



rameter sp, we find stable results

sp|NLO = 1.7098± 0.0544exp ± 0.0015th

sp|N2LO = 1.7087± 0.0539exp ± 0.0006th

sp|N3LO = 1.7069± 0.0539exp ± 0.0009th

sp|N4LO = 1.7053± 0.0539exp ± 0.0008th. (45)

It is reasonable to investigate the applicability of the perturba-

tion theory in the CI+ framework, since this expansion formally

depends on the small energy scale
√
sp ≈ 1.31GeV. The issue

of the applicability of perturbation theory in τ decays has been

previously addressed in the literature

M. Girone and M. Neubert, (1996)



It is desirable to investigate numerically the convergence of the

perturbative expansion within CI+. Let us consider the expres-

sion for the τ-lepton decay rate into hadrons of invariant mass

s > sp. This rate within CI+ is approximated by a non-power

series.

R̂pert.
τ,V |s>sp = Rpert.

τ,V |s>sp/{6|Vud|SEW} =
5∑

k=0

dkAk(m
2
τ , sp) (46)

where

A0(m
2
τ , sp) = f(sp/m

2
τ ), (47)

Ak≥1(m
2
τ , sp) = rk(sp)f(sp/m

2
τ )−

1

π

∫ m2
τ

sp

f(σ/m2
τ )

σ
ρk(σ)d σ,(48)



here we have used the notations: f(x) = 1
4(1− x)3(1 + x) and

ρk(σ) = Im{ak
s(−σ − ı0)},

rk(sp) =
1

π

∫ ∞
sp

ρk(σ)

σ
dσ. (49)

The first term in the series (46), A0, corresponds to the (mod-
ified) parton level contribution to the rate. We calculate the
functions Ak numerically by using analytic expressions for the
functions ρk(σ) In the calculation, we employ the four-loop run-
ning coupling. For the parameters sp and Λ ≡ ΛMS, we use the
values extracted from the ALEPH data within APT+ at N4LO.
Using analytically known coefficients dk, k = 0− 4 and the esti-
mate d5 = 378, we obtain from Eq. (46) the expansion

R̂pert.
τ,V |s>sp = 0.3747 · 10−1 + 0.3275 · 10−2 + 0.3937 · 10−3

+ 0.9270 · 10−4 + 0.3304 · 10−4 + (0.6047 · 10−5) ≈ 0.04127.
(50)



Consider now the non-power expansion for the perturbation the-
ory correction δ(0) obtained within CIPT

δ
(0)
CI =

∑
k=1

dkAk(m2
τ ), (51)

where

Ak(m2
τ ) =

1

π

∫ π
0

Re{(1− eıφ)(1 + eıφ)3aks(m
2
τ e
ıφ)}d φ,

to calculate these functions numerically, we employ the numerical
value for the scale parameter Λ which is extracted from the
ALEPH data within CIPT at N4LO (see Table). At N4LO, the
expansion (51) can be rewritten as

δ
(0)
CI = 0.1513+0.3081·10−1+0.1276·10−1+0.9012·10−2+(0.5233·10−2) ≈ 0.2091.

(52)
Comparing the numerical expansions in Eqs. (50) and (52), one
sees that the CI+ series (50) displays a faster convergence. In



the CIPT expansion (52), the corrections provide a 38% change

of the leading term. In contrast, in the CI+ expansion (50) they

provide only a 16% change of the leading term (we recall that

the leading QCD correction in (50) is the second term in the

series).

● It is convenient to perform evolution of the αs results to the

reference scale Mz = 91.187GeV. This is done by using RG

equation and appropriate matching conditions at the heavy quark

(charm and bottom) thresholds We perform the matching at the

matching scale mth = 2µh where µh is a scale invariant MS mass

of the heavy quark µh = mh(µh). We assume for the scale

invariant MS masses the values µc = 1.27+0.07
−0.11 GeV and µb =

4.20+0.17
−0.07 GeV In the evolution procedure, we have used the exact

numeric four-loop running coupling. In Table, we compare the



estimates for αs(M2
z ) obtained within the new CI+ and standard

CIPT procedures.

Approximation αs(M2
z )|CI+ αs(M2

z )|CIPT

N2LO 0.1187± 0.0019± 0.0005 0.1238± 0.0009± 0.0005
N3LO 0.1176± 0.0018± 0.0005 0.1224± 0.0009± 0.0005
N4LO 0.1170± 0.0018± 0.0005 0.1217± 0.0009± 0.0005

The lattice result

αs(M
2
z ) = 0.1170± 0.0012 (latticeQ.Masson etal.).(53)



Conclusion

❋ We have suggested a dispersive approach to study the hadronic

decay rate of the τ lepton into non-strange vector channel.

❋ In the low energy region the spectral function is determined

from the experiment. In the range s > sp, where sp > 0 is the

onset of perturbative QCD, the spectral function is approximated

within APT. Thus, the quark-hadron duality is used in the limited

range sp < s < m2
τ .

❋ We have assumed that the dominant non-perturbative con-

tributions to the spectral function comes from the low energy

region 0 < s < sp. Then the new approach enabled us to avoid

application of the Wilson OPE in the Minkowski region, the main



source of possible Duality Violations. On the other hand, in Eu-

clidean region the OPE is accepted.

❋ We derive the system of equations for the strong coupling con-

stant αs(m2
τ ) and the energy squared sp, the onset of perturbative

QCD. According to this equations the parameters are determined

as functionals of the experimental spectral function, the latter

is constructed from the ALEPH data using cubic splines. Solv-

ing the system numerically we have extracted numerical values

of the strong coupling constant αs(m2
τ ) and the energy squared

sp. The errors on the parameters coming from the errors on the

invariant mass distributions are correctly determined.

❋ In the calculations, we have used the series Lambert-W so-

lution to the RG equation for the MS running coupling to the



four loop order. This solution enabled us to construct analytic

formulas for calculation the effective spectral density, the central

object for the perturbative calculations. For the QCD correction

to the Adler function we have used the perturbative approxima-

tions up to N4LO.

❋ We have compared the values for strong coupling constant

αs(m2
τ ) extracted within new approach (CI+) and CIPT order by

order in perturbation theory. It is remarkable that the central

values of the coupling constant extracted within CI+ in different

orders of perturbation theory become systematically smaller as

compared to the corresponding values obtained within CIPT (cf.

formulas (43) and (44)). The changes in the central values are

not within the quoted experimental and theoretical errors. At

N3LO The central values of αs(m2
τ ) in formulas (43) and (44)



differ from each other in about 2.7 standard deviation, if the error

is determined within CI+, σ =
√
σ2
exp. + σ2

th. ≈ 0.0151. Using the

error obtained within CIPT, σ ≈ 0.0107, one finds even large

difference, 3.8σ a.

❋ We have examined numerically the convergence of the pertur-

bative series for the τ decay rate within the new approach and

CIPT. We have confirmed that the series within CI+ exhibits

more fast convergence.

❋ The new procedure is based on the Adler function which obey

correct behavior in the low energy region, the task un-achievable

within APT, CIPT or FOPT.

aDue to the larger experimental error obtained within CI+, σCI+/σCIPT ≈ 1.4.



❋ At NNNNLO we have reproduced the Lattice result for the

central value of the strong coupling constant.

Thanks for attention


